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This numerical work proposes two novel designs of long-range surface plasmon resonance sensors (LRSPR) using two different 

coupling prisms. The performance analysis of the proposed sensor has been investigated using the performance parameters like 

quality factor (Q), detection accuracy (DA), sensitivity (S), and full-width half maximum (FWHM). The transfer matrix method 

(TMM) has been employed to compute reflectance. The role of the basic recognition element (BRE) has been played by the 

popular two-dimensional (2D) material, black phosphorus (BP), due to its many optoelectrical features. The maximum obtained 

values for Q, DA, and S are 3333.25 ð1/RIUÞ, 250 ðdegree−1Þ, and 13.33333 degree/RIU for 2S2G coupled sensor design and 

3055.5 ð1/RIUÞ, 83.33 ðdegree−1Þ, and 36.66667 degree/RIU for BK7 coupled sensor design. The operating wavelength of 633 

nm, followed by the principle of attenuated total reflection (ATR), has been employed to carry out the 

theoretical investigation. 

1. Introduction 

Over the past decade, many research works have been carried 

out on various sensing mechanisms. Surface plasmon 

resonance (SPR) is the mainly focused principle for many 

sensing applications in the optical field [1]. The surface 

plasmons (SPs) are the cloud of electrons propagating along 

the metal surface as the incident wave (TM polarized) strikes 

the metal surface’s free electrons [2, 3]. So, the phenomenon 

of SPR generally occurs when the incident wave vector 

matches with the surface plasmon wave vector [4]. SPR 

sensor design can be classified mainly as prism-based [5], 

grating-based [6], optical waveguide coupling [7], and fiber-

based [8]. From these, the prism and fiber coupling are the 

most popular SPR structures. In optical materials, the 

dielectric function of the refractive index is critical for 

controlling the flow of electromagnetic wave propagation. A 

significant alteration in the SPR signal can be noted for a 

slight alteration in the refractive index in the environment. 

Recent developments in various biosensors make them 

extensively used in the medical [9], bioengineering [10], 

environmental [11], and food industries [12]. Higher 

requirements in terms of sensitivity, specificity, and bioassay 

methods have been raised due to the evolution of 

biotechnology. The above requirements are not easy to be 

fulfilled by the conventional SPR (CSPR). So, some new 
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SPR modes like long-range surface plasmon resonance 

(LRSPR), waveguide coupled surface plasmon resonance 

(WCSPR), and coupled plasmon waveguide resonance 

(CPWR) have been studied [13]. In the year 1981, Sarid had 

given the concept of LRSPR [14]. The mechanism of LRSPR 

is a special electromagnetic (EM) mode in which a layer of 

dielectric buffer was inserted between metal and the 

substrate. The long-range surface plasmon penetrates deep 

inside the analyte because of weaker confinement between 

the metal layers. As a result, it has a longer propagation 

distance and greater EM field generation than the CSPR. The 

EM fields of the surface plasmon polaritons (SPPs) that 

belong to the two interfaces of the metal layer start to overlap 

when it is sandwiched between two dielectric layers with the 

same refractive index (RI), creating a symmetric EM field 

mode and an antisymmetric EM field mode [13]. The 

penetration depth in the analyte and propagation length along 

the interface between the metal film and analyte in the case 

of symmetric mode is quite higher, with a lower value of 

attenuation than in the other case. Due to this, the field 

distribution is symmetric EM field mode for long-range 

SPPs, while the antisymmetric EM field mode is called short-

range surface plasmon resonance. Other advantages of long-

range surface plasmon include the greater figure of merit 

(FOM) and detection accuracy (DA) with a low full-width 

half maximum (FWHM) [14]. 

Typical materials employed in sensing applications are 

noble metals, like silver (Ag) [15] and gold (Au) [16]. 

Despite these popular plasmonic metals (Ag and Au), other 

metals, nickel [17], aluminium (Al) [18], copper (Cu) [19], 

etc., can also be employed for LRSPR-based applications. 

The traditional sensor based on LRSPR, gold (Au), is 

generally preferred as the prime plasmonic metal as it has 

great performance in the visible and near-infrared spectral 

bands and exceptional chemical stability under ambient 

circumstances. Still, it cannot process oxidation with lower 

chemical reactivity. Also, the Au-based SPR sensors show 

less DA and have inefficient responses in sensing 

applications [20]. The advantages of using the Ag layer are 

its sharper/ more intense LRSPR bands compared with Au; 

its inclusion increases the sensor’s sensitivity and low optical 

loss in the visible and near-infrared (NIR), spectral bands, 

making it an optimum material for plasmonics. Although its 

demerits are also there, oxidation problems and considerable 

losses due to its surface roughness exist [21]. The oxidation 

problem can be reduced using other 2D 

materials/semiconductors [22]. Cu and Al become viable 

alternatives since Ag and Au are too expensive. Cu and Al, 

however, are chemically unstable in an atmosphere, limiting 

the scope of their potential uses. Alkali metals are also 

excellent for sensing applications, but because of their high 

reactivity to water and air, they must be kept in a vacuum or 

inert gas during storage [21]. The sensor geometry or 

configuration used in our proposed design is Kretschmann-

Raether-based [23, 24]. 

The conventional configuration comprises a coupling 

prism and a metal layer. In between these layers, no air gap 

is present. Its easy practicability over the other prismcoupled 

Otto configuration [25] makes it a popular design choice in 

LRSPR-based sensors. Many interrogation techniques, like 

wavelength interrogation, angle interrogation, phase 

interrogation, intensity interrogation, and amplitude 

interrogation techniques, are available for SPR sensing 

applications [26, 27]. The angle interrogation technique is 

employed here. The mechanism of ATR was the prime 

principle of the proposed sensor. 

Many research studies have been done based on the 

LRSPR phenomenon. Wark et al. [28] reported an LRSPRbio 

affinity sensor to investigate the hybridization of DNA 

adsorption and proposed the fabrication steps for the LRSPR 

chip. Khodami and Berini [29] reported an LRSPR sensor to 

measure anti-BSA/BSA interaction binding kinetics 

constants. Wang et al. [30] investigated a grating-based 

LRSPR sensor to detect E. coli O157: H7 bacteria. They 

attained a 

75.4 deg/RIU sensitivity and a full-width half maximum of 

0.65 deg. Fan et al. [31] reported an LRSPR sensor using 

graphene; they attained higher sensitivity and detection 

accuracy values. Pandey et al. [32] proposed an LRSPR 

biosensor using the dielectric buffer layer (DBL), MXene, 

FG, and analyte layers and attained the highest FOM of 347 

(1/RIU). 

Following graphene’s astounding success, few-layer 

black phosphorus (BP) has demonstrated its enormous 

potential in biosensing. Black phosphorus became popular 

due to its puckered lattice design, high carrier mobility, 

considerable optical anisotropy, tunable bandgap with 

effective carrier mass and work function, higher molecular 

adsorption, and high surface-to-volume ratio [33–35]. The 

single demerit of BP is its nonstability in air and water. Due 

to this, it is a perfectly suitable 2D material for gas-based 

sensors [36]. 

Cytop is a dielectric used as a matching layer in the 

proposed work, sandwiched between the prism and the BP 

layer. It acts as an insulating layer to prevent oxidation in the 

case of the BP layer. It has been widely used in sensing 

applications [16]. It has a low RI of 1.34 (633 nm) [18]. Its 

main component is fluorine, developed by a Japanese 

company (Asahi Glass Company). It is highly resistant to 

corrosion and chemicals and highly stable and has a 

waterproof feature. It also has applications in electronic 

devices like Field Effect Transistors (FETs) [13, 37]. So, the 

main objective of this proposed study is to numerically 

analyze the performance of an LRSPR-based biosensor using 

two different prisms. The performance parameters are 

computed and compared with the earlier SPR-based 

literature to convey the proposed work’s merits. 

Section 2 gives the design and theoretical modeling of the 

proposed LRSPR sensor. Section 3 gives the fabrication 

possibilities and error for the suggested LRSPR sensor 
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designs. Section 4 contains the numerical modeling. Section 

5 composed of the results and discussions for the proposed 

sensor. At last, Section 6 concludes the current work. 

2. Design and Theoretical Modeling 

For the two different coupling prisms, 2S2G and BK7-based, 

two designs of LRSPR sensors have been shown in Figure 1. 

Figure 1(a) shows the labeled diagram of the proposed 2S2G 

prism/Cytop/Ag/BP-based LRSPR sensor and Figure 1(b) 

for the proposed BK7 prism/Cytop/Ag/BP. 

The coupling prisms chosen for our design are 

chalcogenide (2S2G) and BK7. Its high refractive index (RI) 

impresses SPs to excite and raise the input wave’s wave 

vector to match the surface plasmon wave vector (SPWV). 

The 

RI of the 2S2G prism is taken as [38] 

 2:693 x 10−2 8:08 x10−3 

n2S2G = 2 +

 4 + 2:24047 ð1Þ λ

 λ 

For the BK7 prism, its RI is given by [24] 

2 1:03961212λ2 0:231792344λ2 nBK7 = 2

 + 2 

 λ − 0:00600069867 λ − 0:0200179144 ð2Þ 

2 

1:01046945λ 

+ 2 + 1: λ − 

103:560653 

Here, λ is the operating wavelength of 633nm. The design 

parameters for other layers used in this proposed work have 

been summarized here in Table 1. Employing the Drude-

Lorentz equation, for the Ag metal layer, its dielectric 

constant is given by [39] 

ЄAg : ð3Þ λpðλc + λ∗ 

iÞ 

λpand λc are the plasma and collision wavelengths. The 

values of λp = 0:14541 μm and λc = 17:614μm are taken, 

respectively. 

3. Fabrication Possibilities and Errors 

The feasible steps for fabricating the sensor chip have been 

given in this section. The coupling glass prism was cleaned 

up to 4-5 times with a solution having acetone vapor and 

deionized water. Then, it is coupled to the layer of Cytop and 

silver layer. Above the prism, the Cytop layer (dielectric) 

deposition must be done using the spin-coating method [40]. 

Then, the physical vapor deposition of silver metal is done 

by the thermal evaporator system over the Cytop layer [41]. 

 

 (a) (b) 

Figure 1: Proposed LRSPR sensor designs using (a) 2S2G prism and (b) BK7 prism. 

Table 1: Layer parameters used in the current work at 633 nm. 

Layer number Materials used Thickness (nm)  RI 

First 2S2G prism/BK7 prism —  2.358/1.5151 

Second Cytop D2 = 2200  1:34 

Third Ag D3 = 15  0:056253 + i ∗ 4:2760 

Fourth BP D4 = B ∗ 0:5, B = no. of BP layers  3:531 − i ∗ 0:04087 

Fifth Sensing layer — 1:33  +  Δn (Δn change in RI) 
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Then, the BP layer’s fabrication was performed using a 

chemical vapor deposition (CVD) [35]. Next, this BP 

nanolayer shifted over the silver layer. As the fabrication 

process completes, these multilayers of chips are transferred 

to the prism. Finally, using the sensor setup, the output results 

are calculated. There are three main steps of the sensing 

mechanism: initially, firmly attach the sample cell to the 

detecting structure’s surface; then control the analyte with a 

pump so that it flows slowly through the sample cell; at last, 

identify the flow of the analyte through the sample cell; a 

resonance signal is employed. 

The fabrication errors were computed by varying all layer 

thicknesses by 10%. For RI = 1:345, the proposed design’s 

performance parameters have been calculated, including the 

various fabrication errors. Table 2 shows the calculated 

values of the performance parameter for the proposed work. 

4. Numerical Modeling 

The TMM, without any approximations and great efficiency, 

was generally employed for reflectance calculation [42]. 

Using an N-layer matrix, a theoretical study was conducted 

here. For the kth layer, the dielectric constant (ЄK), thickness 

(dK), and the RI are all defined. Using a characteristic matrix, 

the N-layer structure can be symbolized as [43] 

α 

Here, αK, optical admittance = 

dKϒ0pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiffiffiðЄK − n2 sin2θÞ and qk, phase factor = 

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ffiðЄK − n2 sin2θÞ/ЄK, where θ, ϒ0, 

BK7 prism. 

and ЄK represent the angle of incidence, wave number in free 

space, and kth layer’s permittivity. 

n−1 "P11 P = 

YPK= k=2 
P

21 

P12 

P22 

# = 2 cos ð ÞαK −i sin qKK 3
: 

 4−iqkðsin αKÞ cos ð ÞαK 5 

ð
4

Þ 

Table 2: Sensitivity, FWHM, DA, and Q of the proposed LRSPR sensor designs with various fabrication errors. 

Layer thickness (nm) 
Fabrication errors 

 Computed parameters with variations of -10% Computed parameters with variations of +10% 

Ag, Cytop, BP 

(2S2G design) 
S = 13:33, FWHM = 0:00527, DA = 189:7533, Q = 2529:41 S = 13:33, FWHM = 0:0054, DA = 185:18, Q = 2468:44 

Ag, Cytop, BP 

(BK7 design)  S = 40, FWHM = 0:02, DA = 50, Q = 2000 S = 33:33, FWHM = 0:01, DA = 100, Q = 3333 

 

34.68 34.70 34.72 34.74 34.76 34.78 34.80 62.3 62.4 62.5 62.6 62.7 Incident 

angle (°) Incident angle (°) 

RI = 1.33RI = 1.333RI = 1.33RI = 1.333 
RI = 1.3315RI = 1.3345RI = 1.3315RI = 1.3345 

 (a) (b) 

Figure 2: Reflectance of the proposed biosensor w.r.t. the incident angle by varying the RI of the sensing layer, for (a) 2S2G prism and (b) 
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Finally, the reflectance for a p-polarized wave is 

expressed by [44] 

  2 ððP11 + 

P12qnÞÞq1 −ððP21 + P22qnÞÞ2: ð5Þ 

 Rp = rp = 

P11 + P12qn q1 + P21 + P22qn 

4.1. Performance Parameter Calculation. An SPR sensor’s 

performance can be well summarized using various 

performance parameters [45]. These parameters have been 

calculated after plotting the SPR curves. 

The alteration in the RI of the sensing layer ðΔnÞ gives 

rise to variation in the angle of resonance (Δθ). This factor is 

known as sensitivity (S). Therefore, sensitivity (S) can be 

expressed as follows: S = Δθ/Δn, expressed in degree/RIU. 

Another parameter defining the sensor’s performance is the 

full-width half maximum. It gives the variation of the 

incident angle at 50% reflectance. It can be expressed as 

follows: FWHM = θ2 −θ1, expressed in degree ð°Þ, where θ2 

and θ1 are the angles at 50% reflectance. The detection 

accuracy parameter gives information about the sensor’s 

detection exactness. It can be expressed as: DA = ðFWHMÞ−1, 

expressed in ðdegree−1Þ. The next performance parameter is 

the quality factor or figure of merit (Q or FOM). Its expression 

is as follows: Q or FOM = S ∗ DA, expressed in (1/RIU). The 

desired values for S, DA, and Q should be large, and for 

FWHM, it should be low [46]. 

4.2. Field Distribution Computation within the Layers. Using 

the TM polarized input radiation’s reflectivity and 

transmittance, the electric field and magnetic field 

distribution components (E and H) in between the layers are 

generally written using the total characteristic matrix as [47] 

"−HEyx11ð Þð Þzz # = P1ð Þz :"q1 1 +1 −rprp #Hyinc, z1 ≤ z ≤ z2:

 ð6Þ 

Here, Hinc
y and rp denote the amplitude of the incident 

magnetic field and the reflectance coefficient, respectively. 

Also, 

i 

 

P1ð Þz = 4662 cos βk at zð Þ q1 sin βk at zð Þ3775:

 ð7Þ iq1 sin βk at zð Þ cos βk at zð Þ 
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RI (sensing layer) 

FWHMΔθ 

FWHM
Δθ

 

DAMin. reflectance 
DAMin. reflectance 

Figure 3: Alteration in FWHM, DA, Δθ, and minimum reflectance as a function of RI of sensing layer for both 2S2G-based prism design 

and BK7-based prism design. 

 

RI (sensing layer) 

Sensitivity (2S2G)DA (BK7) 
Sensitivity (BK7)Q (2S2G) 
DA (2S2G)Q (BK7) 
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Figure 4: Sensitivity, DA, and Q plots w.r.t. the RI of the sensing layer for both designs. 

Table 3: For 2S2G and BK7 designs: minimum reflectance, Δθ, FWHM, DA, S, and Q value tabulation. 

RI 
(sensing layer) 

Proposed designs 
Minimum 

reflectance 

Change in SPR 

angle (Δθ) 
(degree) 

FWHM 
(degree) 

DA 
(degree-1) 

S 

(degree/RIU) 

Q 

(RIU-1) 

1.33 

1.3315 

1.333 
Design 1 (2S2G + 

Cytop + Ag + BP) 

0.01207 

0.01554 

0.04595 

Ref 

0.018 

0.019 

0.006 

0.005 

0.004 

166.66 

200 

250 

Ref 

12 

12.66667 
2400 

3166.66 

1.3345  0.12525 0.02 0.004 250 13.33333 3333.25 

1.33 

1.3315 

1.333 
Design 2 (BK7 + 

Cytop + Ag + BP) 

0.00105 

0.00585 

0.02349 

Ref 

0.051 

0.052 

0.016 

0.015 

0.013 

62.5 

66.66667 

76.92308 

Ref 

34 

34.66667 
2266.64 

2666.61 

1.3345  0.05918 0.055 0.012 83.33333 36.66667 3055.48 

 

 Incident angle (°) Incident angle (°) 

cytop = 2000 

nmcytop = 2400 

nmcytop = 2000 nmcytop = 2400 nm cytop = 2200 nmcytop = 2600 nmcytop = 2200 nmcytop = 2600 nm 

 (a) (b) 

Figure 5: Effect of different thicknesses of Cytop layer and incidence angle on the reflectance for (a) 2S2G-based design and (b) BK7-based 

design. 

For 

 2 Hyjð Þ
z 3 1 

 j ≥ 2, 4− 5 = Pjð Þz ∗
Y

j−1 P zð = zi + di
Þ

 

 2 E1 +xjð Þzrp 3Hincy , zj ≤ z ≤ zj+1: ð8Þ 

∗ 

4q1 1 − rp 5 

Here, 

 

Pjð Þz = 2466iqcosj sinββk at zðk at zð =z=−zj−ÞjÞ qijcossinββk at 

zðk at zð =z=−zj−ÞjÞ3757: 

ð
9

Þ 

Here, PjðzÞ, ExjðzÞ, and HyjðzÞ indicate the propagation 

matrix, electric fields, and magnetic fields, respectively. 
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Table 4: Minimum reflectance computation for different thicknesses 

of Cytop. 

Cytop thickness Minimum reflectance (BK7 design) 

2000 nm 0.05159 

2200 nm 0.00105 

2400 nm 0.03316 

2600 nm 0.12938 

5. Results and Discussions 

The results of the proposed work have been explained for 

both the prism’s configurations. Under the TM mode of input 

p-polarized light, the LRSPR signals can be excited using the 

two proposed biosensor setups. 

At an operating wavelength of 633 nm, the reflectance 

curves have been studied with the RI alteration of the sensing 

layer for both the proposed biosensor configurations. Figures 

2(a) and 2(b) show the impact of RI variation of the sensing 

layer and incidence angle on reflectance. The 

design. 

RI variation range has been considered from 1.330 to 1.3345 

with a change of 0.0015. It has been observed that the lowest 

minimum reflectance values for both the designs (2S2G and 

BK7) are 0.01207 at 34:729 degree and 0.00105 at 62:46 

degree, respectively. These values are very close to zero, 

which signifies that the maximum number of SPs gets 

excited, giving the proposed sensor’s best performance 

(efficient and accurate). 

The FWHM, DA, Δθ, and minimum reflectance plots 

have been plotted combinedly for the proposed designs 

(Figure 3). The combined sensitivity, DA, and Q plots for 

both designs have been plotted in Figure 4. The minimum 

and maximum sensitivities for a design using a 2S2G prism 

have been calculated as 12 degree/RIU and 13.33 degree/ 

RIU. For the BK7-based design, the maximum and minimum 

sensitivity values are calculated as 36.66 degree/RIU and 34 

degree/RIU, respectively. The quality factor (Q), or FOM, is 

an important parameter for analyzing a sensor’s performance. 

The plots for both designs giving the impact of RI of the 

sensing layer on the Q of the proposed sensor have been 

shown. The maximum value of Q is desired for the good 

performance of the sensor. So, the maximum Q values 

computed here are 3333.25 RIU-1 and 3055.5 RIU-1 for the 

2S2G design and BK7 design, respectively. The value of RI 

of the sensing layer varies from 1.33 to 1.3345, with a 

variation of 0.0015. The parameters like FWHM, DA, S, and 

Q, along with the minimum reflectance and change in SPR 

angle values computed for both designs, have been shown in 

Table 3. 

Table 5: Comparison table with the current and previously reported prism-coupled SPR sensors. 

Layer designs Q (maximum) DA (maximum) Reference 

2S2G prism, Cytop, Ag, BP, sensing layer (Design1) 3333.25 250 Current 

BK7 prism, Cytop, Ag, BP, sensing layer (Design 2) 3055.5 83.33 Current 

2S2G, Cytop, Au, antimonene, BRE, sensing layer 1960 100 [48] 

BK7 prism, dielectric, GZO, sensing layer 150 — [49] 

BK7 prism, DBL, MXene, FG, sensing layer 347 — [32] 

BK7 prism, MXene, sensing layer 304 — [50] 

Prism, Ag, Ne, sensing layer 312.3 — [51] 

 

 (a) (b) 

Figure 6: The electric field distribution as a function of perpendicular distance from the prism interface for (a) 2S2G design and (b) BK7 
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After these calculations, the observation is that the DA 

and Q values are greater for the 2S2G design than for another 

prism (BK7) design, although in terms of sensitivity, the 

BK7-based proposed sensor design is more sensitive than the 

other one. 

The Cytop layer’s thickness impact has now been 

investigated on the reflectance at RI = 1:33. From both plots 

of Figure 5, it has been seen that for the Cytop thickness of 

2200 nm, the minimum reflectance we are getting is 0.01207 

(for 2S2G design) and 0.00105 (for BK7 design), 

respectively. So, the optimized thickness value has been 

considered 2200nm. For the 2S2G prism-based design, as the 

Cytop thickness increases from 2000 nm to 2200 nm, the 

minimum reflectance value shifts from 0.03278 to 0.01207. 

Then by further enhancing the thickness to 2400nm, the 

minimum reflectance value reaches 0.05542. The final value 

of reflectance reaches 0.17463 for a thickness of 2600nm. 

Similarly, for the proposed BK7-based design, the 

corresponding minimum reflectance values have been shown 

in Table 4. 

A comparison between the past research work and the 

proposed work has now been made here in Table 5. The 

analysis shows our proposed design’s performance 

enhancement in terms of quality factor and DA. 

Figure 6 shows the tangential electric field distribution 

plots for both proposed designs with the 2S2G and BK7 

prisms. The variation of field distribution with the distance 

from the first interface of 2S2G prism and Cytop layer to the 

last interface of BP layer and sensing layer varies from 0 to 

2180 nm. The inset figure (Figure 6(a)) shows the zoomed-

up view of the interfaces shown by the oval circle. The 

distance varying is from 2180 nm to 2230 nm. Similarly, for 

the BK7 design, the distance from the coupling BK7 prism 

and Cytop layer’s first interface to the BP layer’s and sensing 

layer’s last interface varies from 0 to 2273 nm. The inset 

figure (Figure 6(b)) shows the zoomed-up view of the 

interfaces shown in the oval circle. The distance varying is 

from 2060 nm to 2163 nm. 

The factor which defines how much the electric field is 

effectively concentrated in the vicinity of the BP and sensing 

layer’s last interface is the Electric Field Intensity 

Enhancement Factor (EFIEF). Both electric and magnetic 

fields are involved in computing the EFIEF parameter. 

Mathematically, its expression is given as [52] 

 
E∥ð

N
E∥

/
ðð1

N
/2Þ ÞÞ = Єn  Hð

N
y∥

/
ðð1

N
/2

−
Þ 

1
ÞÞ2: ð10Þ 

6. Conclusion 

Two different coupling prisms (2S2G and BK7) have been 

used in this novel work to design two LRSPR sensors using 

the Cytop/Ag/BP as other layers. The principle followed in 

this study is the attenuated total reflection method. The 

transfer matrix method has been employed for reflectance 

computation. The proposed design’s performance in different 

performance parameters has been carried out. The earlier 

results signify that our proposed sensor designs provide 

better Q of 3333.25 RIU-1 and 3055.5 RIU-1 for 

2S2G/Cytop/Ag/BP design and another design consisting of 

BK7/Cytop/Ag/BP, respectively, and the DA values 250 

degree-1 and 83.33 degree-1 have been calculated. The 

structure that uses the BK7 prism shows a greater sensitivity 

of 36.66 degree/RIU. So, we believe that the proposed 

LRSPR sensor designs open a new window for promising 

and adaptable sensors in the future. 
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